大家好,我是小跳,我来为大家解答以上问题。微分和导数的关系区别,微分和导数是一回事吗很多人还不知道,现在让我们一起来看看吧!
1、这两者是不同的,粗略来看很多人会认为这两者是一样的,但是其数学含义是不同的,而且严格说两者不是相等的关系。
2、 从数学符号的意义上来说,dy与Δy是不同的,dx与Δx也是不同的。
3、一般地,Δ~代表做“差(分)”运算之后的结果,是一个具体精确的表达。
4、而d~代表做“微分”运算后的结果,里面包含有取某种极限之后的结果,是更抽象的表达。
5、差分仅仅是直观的减法运算,而微分则包含有更为深刻的极限思想在里面。
6、甚至也可以把微分认为是差分的极限。
7、 我们定义函数y=F(x) Δy=AΔx+o(Δx)来自于差分表达式:Δy=y1-y0=F(x1)-F(x0),其中x1-x0=Δx. 右边F(x1)-F(x0)相当于做了一个一阶展开(如果你学过taylor展开,可以联系起来考虑),得到线性部分AΔx和残差项o(Δx),o(Δx)指的是Δx的高阶无穷小:如果Δx是一个具体的数,那么o(Δx)就是一个具体的数;如果Δx趋向于零,那么o(Δx)比Δx“更快地”趋向于零。
8、A是一个与x0有关而与Δx无关的量。
9、 dy=f(x)dx就是把之前式子里Δx的高阶无穷小o(Δx)拿掉不考虑,但是这里舍弃的o(Δx)并不是等于零的,而且一个关于Δx的函数,比如当取Δx收敛到零的极限时就有limo(Δx)=0。
10、所以你可以把dy=f(x)dx看作是Δy=AΔx+o(Δx)取某种极限后的结果。
11、 形式上我们可以定义dy=f(x)dx为一个微分表达式,是一个相对抽象的结果。
12、但其实质是由具体的差分形式Δy=y1-y0=F(x1)-F(x0)演化而来的。
13、或者说dy是Δy在某种极限意义下的近似。
14、 这里相等的只有一阶展开系数A与导数f(x),注意把上面固定的x0看做x即可。
本文到此讲解完毕了,希望对大家有帮助。